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Properties of an interface, created at some experimental conditions in the course 
of the equilibrium crystallization process, are theoretically investigated. 
Influence of quantum and thermal fluctuations on smoothing-roughening phase 
transitions is considered. The phase diagram illustrating these properties is 
found. 
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The infatigable activity of  Ilya Mikhailovitch Lifshitz, his bright talent and 
keen interest in the science have largely defined the modern state of  
condensed matter theory in many fundamental aspects. His impressive 
personality was no less wonderful than his scientific gift. Certainly he noted 
infelicities of  a scientific work presented to him and subjected it to a 
necessary and benevolent criticism. But the first movement of  his soul was 
invariant: he wished his opponent to be right. He was happy with the success 
of  another person as much as some people are with their own success. This 
paper is our tribute to his fond memory.  

1. INTRODUCTION 

In his well-known work (1) Landau has shown that the surface tension of 
a crystal is a nonanalytic function of  the angles, which fix a face orientation 
with respect to the crystal axes. The existence of  smooth areas of  a crystal 
shape is a consequence of  this nonanalyt ic  behavior. Landau has considered 
faces of  a type (0, 1 ,p)  with large ps. They are vicinal to the face (0, O, 1) 
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and have a periodic structure of steps. Every step is assumed to have a unit 
height. The spacing between the nearest steps is p. For a step to be formed 
some energy is required which leads to a jump of the surface energy 
derivative over the angle for the face (0, 0, 1). The interaction between steps 
leads to singularities at the faces (0, 1,p) and at more complicated faces, for 
instance (0, 2, 2p - 1). More complicated faces have been considered in the 
work by Bol'shov e t  al.  ~2) All these calculations are relevant to a classical 
system of steps at zero temperature, since both quantum fluctuations induced 
by bends of steps and thermal fluctuations have been ignored. The estimate 
of the contribution of quantum fluctuations on the interface structure has 
been made by Andreev and Parshin ~3) in connection with the existence of 
crystallization waves. The qualitative estimate of thermal fluctuations has 
been given by Marchenko. ~4) 

A heightened interest in the problem of the equilibrium crystallization is 
associated with the experimental discovery of crystallization waves by 
Keshishev e t  al.  ~5~ and with the subsequent experimental investigation of the 
interface between liquid and solid 4He.(6'7) Recently, a rather interesting 
experimen(8) revealing the ordering of the specific lateral face has been per- 
formed. 

In this work we analyze the problem of the existence of vicinal faces 
and their structures. In Section 2 the influence of quantum effects on the 
existence of smooth and rough areas of the interface is considered. In prin- 
ciple at zero temperature an infinite branching sequence of smoothed 
segments in a crystal shape has to be expected. Their successions, sizes, etc. 
are elucidated in Section 3. Generally in a real experiment the structure 
period of a smoothed face must be limited to 20-30 lattice constants due to a 
finite size of a sample. The roughening transitions on vicinal faces induced 
by thermal fluctuations are considered in Section 4. The problem of the 
equilibrium shape of a crystal in gravitational field is the topic of Section 5. 
Recently an analogous question has been investigated by Avron e t  al.  (9) Our 
calculations of Section 5 are similar to those of work Ref. 9, differing by the 
assumed geometry of the objects in question. 

2. Q U A N T U M  FLUCTUATIONS OF STEPS 

For the sake of simplicity we assume that the face (0, 0, 1) has a simple 
square lattice. We restrict ourselves to the case of plane geometry when the 
matter is placed into the space between two parallel plates, or more generally 
is limited by a cylindrical surface. Under the above conditions the interface 
consists of faces of a type (0, m, n) Every face can be treated as a periodic 
sequence of steps. First we consider properties of individual steps. The 
potential energy is minimal when a step has a form of a straight line. Kinks 
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can appear on a step as a result of quantum fluctuations. The pair kink-an- 
tikink can result from the adsorption of a "liquid" atom by a step at its 
smooth segment or vice versa. A living kink can move by a unit length along 
a step either absorbing an atom from the liquid phase, or desorbing an atom 
to the liquid. The simplest model corresponding to the above-mentioned 
quantum processes is described by a spin-1 Hamiltonian: 

+ -  + 2 
( S m g m + l - ~ - S m  + 

m m 

(1) 

where the spin projections S ~ = :t:1 correspond to a kink and an antikink. 
The projection S Z =  0 corresponds to a smooth sector on the step. The 
quantity 2 is the quantum amplitude of atom arrival and departure processes. 
A is a kink energy. At a small quantum parameter 2/A ~ 1 there is a gap in 
an elementary excitation spectrum. As a consequence the mean square 
displacement of the step (u 2) is finite. For large values of the quantum 
parameter the spectrum is gapless and the step meanders in a diffusionlike 
way. Its mean square displacement increases with the length L along the step 
as ~ lnL.  

It should be noted that in the case of a more general vicinal face of the 
type (l, m, n) with l ~ m ~ n the steps are tilted and contain an extra concen- 
tration of kinks (antikinks) c = l/m. The quantum behavior of a such tilted 
step can be described by the Hamiltonian: 

(2) 

The additional term ~ contains two important contributions. The first one 
is proportional to the field, thermodynamically conjugated to the concen- 
tration c. The second term is associated with the interaction of kinks. This 
interaction is assumed to decrease with a distance in a powerlike way with 
the exponent equal to 4 for van der Waals forces and equal to 3 for elastic 
forces: 

N = - h  + V ( n ) S ; S ; + .  (3) 
m m,n 

The phase diagram of the model with the Hamiltonian (2) is shown in 
Fig. 1. The dotted lines correspond to a fixed concentration c. The critical 
value of 2/A at the transition to the gapless regime at fixed c is proportional 
to d~V/dp21p=l/c. In the gapless region a tilted step is smeared over the 
crystal as well as a nontitted step. 

The situation becomes quite different when steps form a two- 
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Fig. 1. Phase diagram of the model, described by the Hamiltonian (2). In the shaded area a 
step is pinned by the crystal potential. Constant slopes of the step are designated by dotted 
lines. 

dimensional system. If they are situated sufficiently far from each other, the 
displacement (u 2) induced by fluctuations can be evaluated as follows: 

I dq h a h l 
(u z) = a ~ 21r 2msq 4~- ~ In a (4) 

where a is a lattice constant; M is the atomic mass; s is the velocity of 
"sound" along an isolated step, which is assumed to be of the order of 
magnitude of the velocity of sound in the bulk crystal; l is a spacing between 
steps. The prelogarithmic factor in the right-hand side of Eq. (4) can be 
suitably represented as: ~0.1aZ(Ta/O~), where T a is the )~-transition 
temperature, 0 D is the Debye temperature. Assuming that the ratio 
T~/O D ~ 0.1 is as in the bulk helium, we obtain the width of a step due to 
quantum fluctuations: (u 2) 1/2 ~ 0. la  [ln(l/a)] ~/z. This estimate illustrates the 
general theorem: zero oscillations do not destroy an ordering in two 
dimensions. Recently D. Fisher and Weeks ~1~ have obtained a similar 
conclusion. However, the problem of the pinning of a step superstructure by 
the bulk crystal cannot be solved unambiguously by means this theorem. The 
"pinning-depinning" transition has been considered in the works by 
Aubry ~11) and by one of the authors. ~12) The transition from a locked state of 
steps to a state with free sliding steps arises at such interstep spacing, that 
the interaction of the nearest steps becomes equal to the lattice potential. At 
l/a >> 1 the interaction depends on l as 

(l/a) -a-2 = exp[--(A + 2)ln(l /a)]  



On the Interface at the Equilibrium Crystallization 195 

and the renormalized periodic potential is proportional to 

exp {-const(u 2 ) 1/~/a } = exp {-const '  [ln (l/a)] 1/2 } 

if the strains decrease exponentially as exp(-l/lo) far from the step. 
More likely a step is smeared out according to the Gauss law 

~exp(-12/2l~). In this case the effective periodic potential is of the order of 
magnitude 

exp (--n T a l n  I~  ( _ 0 . 3 i n / )  a / ~  exp 

By virtue of the comparison of this potential with the interaction at typical 
value A = 2 (see the following section) we conclude that steps are pinned by 
a crystal lattice at faces with large interstep spacings at least. When l 
decreases, there exists a possibility of the transition into an unlocked state of 
the two-dimensional system of steps. The corresponding areas must be 
roughened even at zero temperature as it has been suggested by Andreev and 
Parshin. (13) 

3. SURFACE TENSION AT T -  0 

The surface tension for the face (0, 1, n) at T = 0 has been calculated by 
Landau. (1) First we generalize this theory for a more general face (0, m, n) 
with m ~ n. Such faces arise when helium is placed between parallel plates. 
Two steps with the spacing l interact according to the powerlike law 
U(l) ~ l -a, where A = 3 for van der Waals forces and A = 2 for elastic 
forces. ~4) 

At zero temperature the problem of the optimal array of steps with the 
mean spacing p = n/m on the vicinal face (0, m, n) can be reduced to the 
ground state problem for a one-dimensional lattice gas. This problem has 
been solved in Refs. 13 and 14. The suitable procedure for constructing the 
ground state structure has been proposed by Hubbard. (13) So far as p is the 
mean distance between two nearest particles, the distance between a particle 
and its kth neighbor can take two different values [kp] and [kp] + 1 with the 
probabilities r k=  1 -  {kp} and 1 - r ~ =  {kp}, respectively. Here [X]({X}) 
denotes the integer (fractional) part of X. 

The equilibrium energy of the face (0, m, n) per a unit length of a step is 

E(m/n)= ~ (rkU([kp])+(l-rk)U([kp]+ l))+e 1 (5) 
k=l 

where e 1 is the energy of a unit length of an isolated step. The function E(e) 
can be defined for irrational values e substituting p - I  by e in Eq. (5). The 
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function E(c) determined in this way is continuous; however, its derivative 
has jumps at every rational value of c. This jumps have been calculated in 
Refs. 15 and 16 and can be written as 

dE 
(U([kp] - 1) - 2U([kp]) + U([kp I + 1)) (6) A -d-b-c = k = ,  

As a consequence, the surface tension derivative considered as a function of 
the slope angle has discontinuities. Equations (5) and (6) can be 
considerably simplified when U(x) is a fast decreasing function of x, e.g., 
U(x) ~ x -k with sufficiently large k. The right-hand side of Eq. (6) can be 
estimated as 

dE d2g(p) 
A --~-c ~ ap---- W -  (6 ')  

Henceforth the condition of the fast decrease of U(x) is assumed to be 
fulfilled. 

The largest discontinuity of the surface tension derivative pointed out in 
Ref. 1 corresponds to c = 0, i.e., to the face (0, 0, 1). We put it equal to 2e~. 

There exist two alternative statements of the lattice gas problem. One 
can fix either the concentration c or the chemical potential p = dE/dc. In the 
interface problem the distance from the wall plays a role of the chemical 
potential. It is worthwhile to declare the results of Refs. 15-17 for a one- 
dimensional lattice gas with a fixed p. 

Every rational value of e corresponds to a finite segment Ap = A(dE/dc) 
on the ~ axis given by Eq. (6). The set of these segments densely fills the 
whole P axis.(16) An infinite set of different periodic phases can be described 
as a branching sequence. It starts with the main sequence of faces 
(n)-= (0, 1, n). Every bifurcation obeys the rule: between two neighboring 
phases (A) and (B) there appears a dimerized phase (AB), which is the 
nearest neighbor of the phases (,4) and (B) at the next bifurcation. 

This possibility was known to I. M. Lifshitz as early as in the Fifties. 
The bifurcation scheme has first been published in Ref. 2. 

In the conclusion of this section let us predict what kind of faces can 
exist at T = 0 in an experimental sample of finite geometry. We use the fact 
that the jump p - '  A p ( p ) ~  p a-3 is proportional to the size of a smooth 
face with the period p in a crystal shape. By equating this size to the length 
of an elementary cell pa we obtain 

pa ~ Lp -~ -3  

where L is either the capillar length or thel inear  size of the interface. In the 
most favorable case L ~ 1 cm and Pmax cannot exceed 2 0 -  30 lattice 
constants. 
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4. SURFACE ENERGY A N D  PHASE D I A G R A M  AT T~: 0 

At any nonzero temperature the surface energy derivative has a finite 
number of discontinuities at some rational concentrations c versus discon- 
tinuities at any rational concentration c at zero temperature. In Fig. 2 the 
phase diagram for the step system is presented in the T-/~ plane. In the limit 
T = 0 the bifurcation set described above is reproduced. 

Using the transfer-matrix (TM) method to reduce statistical mechanics 
of steps to quantum mechanics of a one-dimensional lattice gas we construct 
the phase diagram of Fig. 2. The analogous problem was solved in Ref. 18. 
So the phase diagram of Fig. 2 is borrowed from it. The most relevant 
quantity here is the surface energy E versus the slope angle 0 of the interface. 
It should be noted that tan 0 coincides with the step concentration e and is 
thermodynamically conjugated to the chemical potential ~. In the TM 
method an average direction of steps play the role of the time axis. Along 
steps there may exist kinks, which correspond to jumps of particles to the 
neighboring steps of a one-dimensional chain at fixed "time." The jump 
amplitude coincides with the Boltzmann factor of a kink: Z = exp(--Eo/T ). 

7- 

T l 

0 0 0 0 0 0 

Fig. 2. Phase diagram of a two-dimensional step system. In the bottom of this figure a fine 
structure of the phase diagram is shown. 
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Therefore steps can be interpreted as trajectories of particles obeying the 
Fermi statistics. The free energy of a two-dimensional system of steps 
corresponds to the ground state energy of the above mentioned one- 
dimensional chain of fermions. 

To demonstrate the applicability of the TM method we calculate the 
free energy of a face with the step concentration e, satisfying the inequalities 
n < 1/e < n + 1, where n is an integer. The temperature scale can be devided 
into three ranges. In its middle part determined by inequalities 

Z~,+ ,~ ~ Z ~ Z~,,, + ,~ (7) 

only the distances n and n + 1 between two nearest particles are relevant 
(Z<~) is the critical fugacity of the ordered structure (A}). Hence, we can 
introduce a fictitious lattice with sites either occupied with a particle (the 
distance n + 1 in an initial lattice) or unoccupied (the distance n). Only 
kinks permutating these distances between the nearest steps are taken into 
account (see Fig. 3). At temperatures defined by inequalities (7) the 

Pf 

c 

/ 

L*4 /I 'I. 

Fig. 3. Possible displacement of steps at the step concentration c (1/(n + 1) <~ c <~ 1/n). The 
kinks "a", "b," and "c" are allowed for the temperature range, determined by inequalities (7). 
The kink "d" is not allowed, because one of the distance equal to n -- 1 is not conventional. 
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interaction of fermions is irrelevant. The fermion concentration in the 
fictitious lattice is equal to {cot 0}. The ground state energy of this system 
per a site of the initial lattice is given by 

E ( c = t a n O ) = t a n O  ( ( n +  1 ) U ( n ) - n U ( n +  1 ) + c  1 -  2TZ sinn{cot0})n (8) 

In Eq. (8) the 0-independent terms are neglected. The last term in Eq. (8) is 
the energy of the one-dimensional degenerate Fermi gas with the energy 
spectrum 

e k = --2TZ cos k 

The jump ACt Ic 1/n is determined from Eq. (8) 

ACt(c = 1/n, T) = ACt(e = 1/n, T = O) -- 4nTZ(T)  (9) 

At the critical temperature ACt vanishes. This estimates the 
smoothing-roughening transition temperature of the face (0, 1, n) as follows: 

( - E ~  1 d2U(n) (10) 
Tcexp ~ -- 4 dn 2 

Previously, transition temperatures of two-dimensional anisotropic systems 
have been logarithmically estimated by Lyuksyutov et al. (19) and by 
Marchenko.(4) 

Equation (10) provides a good estimate of T~ but is not rigorous, since 
near the critical fugacity Z~n > there is a competition of three allowed 
distances ( n -  1, n and n + 1) instead of the competitions of these distances 
in separate pairs. A description of this situation by means of a spinless 
degenerate Fermi gas is insufficient. In Ref. 18 this problem has been 
reduced to the problem of the planar spin-1 chain which has anisotropy of 
the "single-ion" type (SZ) 2 and is placed in a "magnetic field." The 
equivalence of the phase transitions in the spin-1 chain and in the two- 
dimensional classical X Y  model has been established by Luther and 
Scalapino ~2~ and by Den-Nijs. (21) A discontinuity of Ct in the vicinity of the 
transition temperature is 

ACt ~ exp {--const/(T~ -- T)1/2 } (11) 

At Z > Z~n~C t changes continuously, therefore the corresponding region 
on the interface is roughened. 

In the third temperature range Z<Z(~,n+I  > the dimerized phase 
(n, n + 1) with Miller indices (0, 2, 2n + 1) becomes ordered. Like at the 
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temperature interval (7) spinless fermions can be introduced, but their 
interaction cannot be neglected. The critical behavior is determined by 
formulas (4)-(5) of Ref. 18. In our case they look like 

TcZ~n,n+ 1 )  - -  

A/~=47r(2n+ 1) d - ~  d2U p=2,+1 

1 d2U(p) p = 2 n + l  (12) 
2 dp 2 

l exp Z c . . . .  1/2 [( 

So far we have presented the picture of ordering in the basic sequence of 
vicinal faces. Its generalization is given below: 

On the phase diagram depicted in Fig. 2 the dimerized phase (AB) is 
created between two neighboring phases (.4) and (B). The estimate of the 
critical fugacity is Z(~B)~ 2 z - a .  Z~A). A further temperature decrease 
leads to an appearance of ordered phases (AEB), (AB2), etc. The sequence 
(AnB) ( n =  1,2,...) is a specific one. The critical fugacities in this set 
decrease slowly against the increase of n, when n ~> 1. In this case the 
description of the spin model with a large spin coincides with one of the 
statistical two-dimensional X Y  model. Its critical behavior is known, and 
singularities have a form of Eq. (11). Any two neighboring phases of the set 
under consideration, for instance, (AnB) and (A"+IB), give rise to a new 
sequence of ordered phases, beginning from the dimerized phase 
((A"BAn+IB) in the example). 

5. EQUILIBRIUM SHAPE OF THE INTERFACE 

To compare the theoretical predictions with the real experiments it is 
necessary solve an auxiliary problem for the equilibrium crystal shape in a 
gravitational field. The first to consider this problem, neglecting the 
gravitation, has been Wulff. t22) He has invented the geometrical method for 
constructing the surface, using a known form of the surface tension 7. The 
rigorous proof of Wulff's solution has been presented by Herring. (23) An 
analytic solution of the problem without the field has been derived by 
Landau (1~ in the framework of the planar geometry. Recently, Avron et al.(9) 
could generalize with the gravitation included WultFs construction and 
Landau's analytic solution for a crystal, lying on a horizontal table. Here we 
consider an interface lying inside a cylindrical volume with arbitrarily 
shaped normal section (Fig. 4). The cylindrical axis is assumed to be 
horizontal. We also assume that the crystal axis, which is perpendicular to 
the crystal face (0, 0, 1), lies in the plane of the normal section. These 
conditions lead to the plane geometry, i.e., vicinal faces are of the type 
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Fig. 4. Normal section of a cylindrical Volume, containing the interface y(x). The bottom 
part of this volume corresponds to the curve y~(x), the top part corresponds to y2(x). 

(0, m, n), and the surface tension 7 depends on the angle O only (see Fig. 4). 
Since optical measurements so far are the main source of information about 
the crystal shape assumed to be homogeneous along the ray direction (see, 
for instance, Ref. 5), our assumptions hold. 

To solve this auxiliary problem we must minimize the functional 

J = YSL(0) dl + Ysw dll + + YLW dll 
X l  X l  2 

(14) 
1 c L 1 ~x2 

2 2 - PL) g ( / -  y~) ax + T P c g ) o  ( Y 2 - y ' ) d x + T ( P s  Jx, 

with the constraint 

f X2 (y(x) - -  y l ( X ) )  dx = V s ( 1 5 )  
" X  1 

Equation (15) implies that the volumes of the liquid and solid phases are 
constant at the equilibrium crystallization. All the types of the surface 
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tensions are taken into account in the first three terms of the functional F: 
7sL, 7sw, and 7LW are tensions on the boundaries "solid--liquid", 
"solid-wall," and "liquid-wall," respectively. We integrate over the interface 
y(x) in the first term and over the external surface Yl(X) in the other two 
terms. The remaining terms on the right-hand side of Eq. (14) denote the 
gravitational energy of the two-component system. 

In the preceding sections we have calculated the energy E(e) of a step 
system per unit area of the face (0, 0, 1). In Fig. 4 the trace of this plane 
coincides with the axis X ' ,  rotated by the angle 0 0 from the horizontal axis 
X. Hereafter we shall use a surface tension 7 and a surface energy a per a 
unit horizontal area. Those both energies can be expressed via the energy 
E(e) by means of the following equalities: 

E(o) a( o) 
? = - (16) 

cos 0 cos ~0 

The angles 0 and ~0 in Fig. 4 are related by the obvious equation: ~0 = 0 + 0 0. 
It is noteworthy that dy/dx = tan ~0. 

The Euler equations and boundary conditions for the edge angles are 

d2a 
P ~pz dp = (GY + )O dY 

d2a  
X)ax 

(17) 

P l  -}- C~ - -  ZIy (1 + p~)1/2 = 0 
X = X l ( X  2 ) 

(18) 

where G = g(Ps -PL) ,  A7 = 7Lw - Ysw, P = dy/dx, Pl = dyffdx. 
The edge angles ~o+ and ~0_ are determined by two Eqs. (18). It should 

be emphasized that Eqs. (18) also describe the case of the "liquid-liquid" 
interface, when ?LL is not ~0 dependent. 

In the case of an asymmetric crystal growth (0 0 4= 0) the edge angles 
differ by their absolute values even at a symmetric volume geometry. The 
function da/dp has jumps for each rational tan 0 at zero temperature. Hence, 
a plane strip on the interface, corresponding to the integer Miller indices, is 
fixed in a closest vicinity of the external (wall) boundary. At T4= 0 the 
function da/dp has a finite number of jumps (cf. Section 4), so near the 
external boundary both smooth and rough areas of the interface can exist. 
This behavior is qualitatively illustrated by Fig. 5. 
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dC~g 

Fig. 5. Graph solution of Eq. (18) is shown for the case of vertical walls. The asymmetry of 
function da/dp is due to nonzero 00. 

The solution of the Euler Eqs. (17) can be expressed parametrically: 

G~ + ~. = R ( p )  

f[  d2a dp 
x = x o + dp 2 R (p )  

(19) 

where R = ((Gy o + )0 2 + 2G{p(da/dp) - [a(p) - a(0)]}) '/2, and (:Co, Yo) is 
the interface coordinates corresponding to p = 0. The Lagrange factor 2 can 
be interpreted as pressure. One finds a simple formula for it in the case of 
vertical walls. The integration of the second Eq. (17) leads to the relation 

= Zr /L  (20) 

The sizes of plane strips on the interface are 

A d a / R  
y i  

(21) 
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To estimate these sizes we use the average form of the surface energy: 

E = ~0 -~ el  tan 0 + e2(tan 0) a 

Here e0 is the energy of interface creation, e 1 is the energy of step creation 
on the face (0, 0, 1), the last term describes the interaction of steps. To 
observe the ordering on the vicinal faces most favorably, the plane strip of 
the face (0, 0, 1) must be located at least at distances of the order of ~1 mm 
(capillar length) from the wall. By virtue of this condition vicinal faces 
occupy large summary area, corresponding approximately to a real interface 
length ~1 cm. This holds if (,d)0 2 G L  z a YsLP0, as the analysis of Eq. (19) 
reveals. 

6. SUMMARY 

Here we summarize those conclusions of our theory which can be tested 
experimentally. It is shown that the faces being vicinal to the stable face are 
also stable at sufficiently low temperatures. The ordering temperatures of 
faces which are vicinal to the face (0,0, 1) can be estimated as 
Tc(n ) ~ T0/ln n, where n is a period of a step structure on a vicinal face; T o 
is the ordering temperature of the face with the interstep spacing of the order 
of an interatomic spacing. Recently, Wolf et al. (s) have observed the 60 ~ face 
on the 4He crystal shape with the ordering temperature 0.36 K. This value 
can be suggested as a T O candidate. Therefore we have an estimate 
Tc(n ) <~ O. 1 K.  

The critical behavior of any plane strip size is universal and described 
by Eq. (11). The confirmation of this law by optical measurements is inade- 
quate, because the optical resolution limit ~1/~m. At zero temperature the 
linear size of an ordered face cannot exceed ~ 1 ram, so the above-mentioned 
law is experimentally violated at ( T ~ -  T ) / T  C ~ 1/50, 

It would be extremely interesting to find the step structure on the 
interface by diffraction methods. So far we can suggest only one possibility, 
associated with the use of hypersound. 
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